
Multiple Dynamic Models for Tracking the Left Ventricle of the Heart from

Ultrasound Data using Particle Filters and Deep Learning Architectures

Gustavo Carneiro∗ and Jacinto C. Nascimento∗

Instituto de Sistemas e Robótica
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Abstract

The problem of automatic tracking and segmentation of
the left ventricle (LV) of the heart from ultrasound images
can be formulated with an algorithm that computes the ex-
pected segmentation value in the current time step given all
previous and current observations using a filtering distribu-
tion. This filtering distribution depends on the observation
and transition models, and since it is hard to compute the
expected value using the whole parameter space of segmen-
tations, one has to resort to Monte Carlo sampling tech-
niques to compute the expected segmentation parameters.
Generally, it is straightforward to compute probability val-
ues using the filtering distribution, but it is hard to sample
from it, which indicates the need to use a proposal distri-
bution to provide an easier sampling method. In order to
be useful, this proposal distribution must be carefully de-
signed to represent a reasonable approximation for the fil-
tering distribution. In this paper, we introduce a new LV
tracking and segmentation algorithm based on the method
described above, where our contributions are focused on
a new transition and observation models, and a new pro-
posal distribution. Our tracking and segmentation algo-
rithm achieves better overall results on a previously tested
dataset used as a benchmark by the current state-of-the-art
tracking algorithms of the left ventricle of the heart from
ultrasound images.

1. Introduction

The automatic tracking and segmentation of the endo-
cardial border of the Left Ventricle (LV) of the heart from
ultrasound data is an important tool to analyze the health
of the heart. For instance, with such segmentation in time,
it is possible for a clinician to provide a quantitative func-
tional analysis of the heart, such as the ejection fraction
estimation. The automation of this procedure is desirable
in a clinical setting mainly due to the following reasons:
1) it can improve the workflow in a typical clinical envi-
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ronment by increasing the patient throughput; and 2) it can
decrease the variability between user measurements. How-
ever, in order to be useful, automatic LV tracking and seg-
mentation systems have to handle several problems inherent
to ultrasound imaging, such as: fast motion during systole
(contraction) phase, low signal-to-noise ratio, edge dropout
caused by motion, and the presence of shadows produced
by the dense muscles.

The tracking algorithm to solve this problem can be for-
mulated to compute the expected segmentation given the
previous and current observations over the space of segmen-
tation parameters [6]. In this framework, the segmentation
parameters constitutes the state vector while the image rep-
resents the observation vector. The expected segmentation
described above is computed using the filtering distribution,
which calculates the probability of a certain segmentation
given previous and current observations. The computation
of this expected value is usually not tractable given the high
number of dimensions of the space of segmentation param-
eters. As a result, it is common to approximate this ex-
pected value using Sequential Monte Carlo (SMC) sam-
pling techniques, which means that only a few weighted
samples (each sample represents a segmentation) are used
to produce the expected value. The weights in the samples
are computed using the observation and transition models,
while the samples are obtained from sampling the filtering
distribution. Another usual problem is the difficulty in sam-
pling this filtering distribution, which is solved by sampling
another distribution (called the proposal distribution) that
provides a reasonable approximation to the filtering distri-
bution, but is much simpler to sample. Then the proba-
bility of the proposal distribution has to be taken into ac-
count when calculating the sample weights. Finally, using
the samples and their respective weights, it is possible to
compute the expected segmentation mentioned above. Be-
low we provide a brief discussion on the observation and
transition models and on the proposal distributions.

The solutions proposed for the observation model can be
categorized into two classes: 1) low-level methods that use
prior models of the LV appearance, and 2) pattern recog-
nition methods based on appearance models automatically
built from manually annotated LV images. Low-level meth-
ods [5, 10, 13] consist of segmentation algorithms that use
a prior model of the LV based on the assumptions that the
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Figure 1. Block diagram containing all steps of the tracking algorithm proposed in this paper.

myocardium displays brighter, and the blood pool in the LV
displays darker than other structures in the image. The main
problem with this approach is that the violation of these
assumptions may lead to incorrect segmentations. Pattern
recognition methods involve the use of a database of anno-
tated LV images (i.e., a training set) to automatically build
a model of the LV appearance [4, 7]. Even though this ap-
proach currently holds the most competitive results [11],
it still faces a few challenges, such as: the need of a large
training set, robustness to imaging conditions unseen in the
training set, and the run-time complexity of the search pro-
cess. Lately, there has been a significant effort to reduce the
search complexity. For instance, the marginal space learn-
ing (MSL) [20], which partitions the search space into sub-
spaces of increasing complexity, achieves a significant com-
plexity reduction, but the search methods proposed by our
paper are orthogonal to it, meaning that our search meth-
ods can be easily integrated into MSL. Another contribu-
tion [21] was a pattern recognition approach that, given any
position in the search space, the method outputs a gradient
vector that optimizes the LV segmentation function. This
approach is likely to work as long as the searching region is
sufficiently close to a local optimum of the objective func-
tion. In addition, the training procedure is likely to need a
larger training set due to the much higher number of param-
eters to be learned in the gradient vector.

Though receiving relatively less attention than the obser-
vation model, the transition model plays an important role
in the computation of the filtering distribution. The most
typical transition model is the prediction estimated from the
Kalman filtering [18], but the assumption of a Gaussian dis-
tribution is not appealing given the complex motion patterns
of the heart. More interesting transition models are built
when providing more degrees of freedom to explain those
motion patterns. For instance, Sun et al. [17] introduce a
transition model that is learned from training data using an
information-theoretic criterion, but the lack of a prior dis-
tribution in the model imposes the need of a large and thor-

ough training set to build a reliable transition model. A sim-
ilar approach is proposed by Yang et al. [19] consisting of a
transition model that depends not only on the previous state
vector, but also on all state vectors up to current time instant.
This model is also automatically learned from training data
and consists of a manifold describing the motion pattern of
the heart. Note that the dependence on a large and complete
training set is even more blatant in this work given the large
number of parameters in the model. Models based solely on
prior information [16] also seem inadequate given that there
might be information present in training data that may not
have been captured by the prior. The transition model pro-
posed by Nascimento [11] consisting of a mixture of two
models (one for systole and another for diastole) is in the
right direction, and inspired us to implement our transition
model. The main difference is that we use both a prior in-
formation on the motion patterns, assuming the existence of
two cardiac cycles (i.e., systole and diastole), and a learned
model from data instead of a transition model containing
only prior distributions [11].

Finally, for tracking methods based on SMC sampling
techniques, it is necessary to use a proposal distribution
that approximates reasonably well the filtering distribution.
Senegas et al. [16] propose an SMC sampling method using
a proposal distribution based only on the observation model,
which is a limitation because it does not take into account
the transition model. At each new time step, each sample is
re-weighted, and if its weight falls below a threshold, then it
gets discarded. Sun et al. [17] introduce a proposal distribu-
tion based only on the transition model, which is certainly a
limitation given that it does not take into account the obser-
vation model. The work that inspired our model was pro-
posed by Okuma et al. [12], who proposed a tracking algo-
rithm (i.e., not LV tracking) combining discriminative clas-
sifier detections and particle filtering to track multi-target
non-rigid objects, but note that the requirements in terms of
segmentation precision is not as high as in the LV segmen-
tation. Their main contribution is the fact that the proposal



distribution is built based on the transition and observation
models. We adapt this idea to the LV tracking problem and
extend it with the addition of prior models.

In this paper, we propose a new LV tracking algorithm
based on SMC methods (Fig. 1). Our main contributions
are a new transition model, a new observation model based
on deep learning architectures and the formulation of a new
proposal distribution. The transition model proposed in this
paper makes use of the prior information that at each time
instant, the heart is either expanding (diastole) or contract-
ing (systole). The deformation caused by these motion pat-
terns are described by a linear transform, whose parame-
ters are learned from the training data. The new observa-
tion model is based on deep learning architectures, which
involves a statistical pattern recognition model, where we
address two of the problems present in pattern recognition
methods, namely: 1) robustness to imaging conditions un-
seen in training data, and 2) run-time complexity of the
search process. In order to handle the robustness to imaging
conditions, we move away from the use of boosting classi-
fiers [7], and rely on the use of deep neural network classi-
fiers [15]. The main advantage of deep neural networks is
its ability to produce more abstract feature spaces for clas-
sification and to automatically generate optimum feature
spaces directly from image data. In order to tackle the com-
plexity issue, we study the use of optimization algorithms of
first and second orders [2]. The main difference compared
to the work by Zhou and Comaniciu [21] is that we com-
pute the gradient vector and Hessian matrix directly from
the output of the classifiers, imposing no additional require-
ments for the training set. Finally, our proposal distribution
is inspired by the work of Okuma et al. [12], which com-
bines the detection results from the deep learning architec-
ture with the transition model. This combination provides
precise segmentation, and robustness to imaging conditions
and drifting. We show quantitative comparisons between
our method and state-of-the-art approaches [4, 7, 11] and
with a previous version of this system [3], which uses only
the observation model for segmenting the LV (i.e., the dy-
namic model was not implemented), and the results not only
show a superior performance of our approach, but they also
display that efficient search methods maintain the original
accuracy of the method while reducing ten times the run-
time complexity.

2. Tracking of the Left Ventricle

The main problem we wish to solve in this paper is the
tracking and segmentation of the left ventricle in an ultra-
sound sequence I1:t, which denotes the images from time
instant 1 to t. The segmentation is denoted by a set of
points St = {si,t}i=1..N , with si,t ∈ ℜ

2 representing the

the ith of the N points forming the LV contour. Recall that
in our system, the images represent the observations and
the segmentation denotes the state vector. We assume the
existence of a training set D = {(I, θ,S,K)i}i=1..M con-
tainingM training images Ii of the imaging of LV using ul-
trasound, a respective manual annotation S, the parameters

Figure 2. Original training image (top left) with the manual LV
segmentation in yellow line and star markers (top right) with the
rectangular patch representing the canonical coordinate system for
the segmentation markers. The bottom images display several
patches extracted from the annotated training images, which will
be used to train the rigid classifier.

of a rigid transformation θ ∈ ℜ5 (position x ∈ ℜ2, orien-
tation γ ∈ [−π, π], and scale σ ∈ ℜ2) that aligns rigidly
the annotation points to a canonical coordinate system (see
Fig.2) and K ∈ {systole,diastole}, which denotes the type
of cardiac cycle.

The goal of our tracking algorithm is to produce the LV
contour St for current time instant t given all previous ob-
servations I1:t, as follows:

S∗t =

∫

St

Stp(St|I1:t, y1,D)dSt, (1)

where y1 is a random variable indicating the presence of
the LV in the image region represented by the contour (we
provide more details below). The integral in (1) cannot be
computed in a reasonable amount of time, so we use particle
filtering to estimate it. With particle filtering, the filtering
distribution p(St|I1:t, y1,D) is approximated with a set of

weights and particles: {w
(l)
t ,S

(l)
t }, which can approximate

the segmentation as [6]:

S∗t ≈
∑

S
(l)
t

S
(l)
t w

(l)
t , (2)

with w
(l)
t ≈ p(S

(l)
t |I1:t, y1,D) and

∑

l w
(l)
t = 1. One

of the issues of particle filtering is that while it is easy to

compute p(S
(l)
t |I1:t, y1,D) for a contour S

(l)
t , it is hard to

sample from this distribution, so it is necessary to have a
reasonable proposal distribution (to sample from) that ap-
proximates well the filtering distribution.

The particle filtering algorithm used in this paper is the
sampling importance re-sampling (SIR) [1], which has the
following steps (Fig. 1):

1. Draw P samples from proposal distribution using:
for l = 1 : P , sample

S
(l)
t ∼ q(St|S

(l)
1:t−1, I1:t, y1,D);

2. Update sample weights:

w̃
(l)
t = w

(l)
t−1

p(It|S
(l)
t
,y1,D)p(St|S

(l)
t−1,D)

q(S
(l)
t
|S

(l)
1:t−1,I1:t,y1,D)

;



3. Normalize sample weights: w
(l)
t =

w̃
(l)
t

P

l
w̃

(l)
t

;

4. Compute effective number of particles

Neff = 1/
∑

l(w
(l)
t )2;

5. If Neff < KNeff × P , then re-sample by drawing
P particles from current particle set proportionally to

weight and replace particle, and set w
(l)
t = 1/P .

In this section, we first discuss the filtering and predic-
tive distributions. Then we explain how the transition and
observation models work, followed by an explanation of the
proposal distribution.

2.1. Filtering and Predictive Distributions

The filtering distribution is the posterior distribution in
(1) that can be expanded as in:

p(St|I1:t, y1,D) =
p(It|St, y1,D)p(St|I1:t−1, y1,D)

p(It|I1:t−1, y1,D)
(3)

where the denominator can be re-written as:

p(It|I1:t−1, y1,D) =
∫

St

p(It|St, y1,D)p(St|I1:t−1, y1,D)dSt.
(4)

Finally, we also need to expand the predictive model in (3)
as follows:

p(St|I1:t−1, y1,D) =
∫

St−1

p(St|St−1, I1:t−1, y1,D)p(St−1|I1:t−1, y1,D)dSt−1.

(5)

2.2. The Transition Model

One of our contributions resides in the definition of the
transition model, which takes into account the cardiac cycle
observed in the previous instant and the prediction for the
next step in the cycle. We simplify the problem by assuming
that the cycle is composed of two phases, namely the systole
(contraction) and diastole (relaxation). The transition model
in the predictive model (5) is defined as follows:

p(St|St−1,I1:t−1,y1,D)=
∑

Kt−1

p(St|St−1,I1:t−1,Kt−1,y1,D)p(Kt−1|St−1,It−1,y1,D),

(6)
with Kt−1 ∈ {systole, diastole}. The first term on the right
hand side (RHS) of (6) represents the probability of a seg-
mentation St given the cycle in t − 1. Noting that cycle
changes can be considered not frequent in a cardiac cycle,
we provide a transition distribution which tends to main-
tain the current cycle using a Gaussian model learned from
the training set that indicates the expected contour given the
previous cycle value. This means that in (6), we have:

p(St|St−1, I1:t−1,Kt−1, y1,D) =
G(St−1|M(Kt−1)St−1,ΣS),

(7)

where M(Kt−1) is a linear transform applied to St−1

learned from the training data that expands or contracts the
contour depending on phase Kt−1 of the cycle, as shown in
Fig. 4-(b), ΣS is the covariance of the annotationsS learned
from the training data, and G(x|µ,Σ) computes the prob-
ability of x using a Gaussian distribution of mean µ and
covariance Σ. In (6), the term p(Kt−1|St−1, I1:t−1, y1,D)
corresponds to the probability of cycle Kt−1 in t− 1 given
the contour was detected. We show in the observation
model below how this value can be computed.

2.3. The Observation Model

The observation model in (3) can be defined as

p(It|St, y1,D) ∝ p(St|It, y1,D)p(It|y1,D), (8)

where p(It|y1,D) = C (here, assume C = 1), and

p(St|It, y1,D) =
∫

θ
p(St|θ, It, y1,D)p(θ|It, y1,D)dθ.

(9)
The first RHS term in (9), representing the non-rigid part of
the detection, is defined as follows:

p(St|θ, It, y1,D) =
∏

i

p(si,t|θ, It, y1,D), (10)

where p(si,t|θ, It, y1,D) represents the probability that the
point si,t is located at the LV contour. Assuming that ψ
denotes the parameter vector of the classifier for the non-
rigid contour, we compute

p(si,t|θ, It, y1,D) =
∫

ψ
p(si,t|θ, It, y1,D, ψ)p(ψ|D)dψ.

(11)
In practice, we run a maximum a posteriori learning pro-
cedure of the classifier parameters, which produces ψMAP,
meaning that in the integral (11) we have p(ψ|D) = δ(ψ −
ψMAP), where δ(.) denotes the Dirac delta function. Also,
instead of computing the probability p(si,t|θ, It, y1,D), we
train a regressor that indicates the most likely edge location
(see Fig.3); this roughly means that p(si,t|θ, It, y1,D) =
δ(si,t − s

r
i,t(θ, It, y1,D)), with s

r
i,t(.) being the regressor

result for the ith contour point, so Eq. 9 is effectively
∫

θ

(
∏

i δ(si,t − s
r
i,t(θ, It, y1,D))

)

p(θ|It, y1,D)dθ.
The second RHS term in (9) represents the rigid detec-

tion, which is denoted as

p(θ|It, y1,D) = Zp(y1|θ, It,D)p(θ|It,D) (12)

where Z is a normalization constant, p(θ|It,D) is a prior
on the parameter space, and

p(y1|θ, It,D) =

∫

γ

p(y1|θ, It,D, γ)p(γ|D)dγ, (13)

with γ being the vector of classifier parameters, which are
estimated through a maximum a posteriori learning proce-
dure, producing γMAP. This means that in (13) p(γ|D) =
δ(γ − γMAP).

The observation model introduced in this section is used
in the following steps of the SIR algorithm:
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the lines drawn perpendicularly to annotation points. These pro-
files represent the training data used to learn the regressor param-
eters.

• Proposal distribution generation for t > 1 (see
Sec. 2.4). This step involves a search in the space of
segmentations St to find a set ofM segmentations that
maximizes the probability (9), as follows:

{S̃t} = topM argmax
St

p(St|It, y1,D), (14)

where the operator topM returns the arguments St
that produce the M highest values for the probability
p(St|It, y1,D).

• Initial proposal distribution generation at t = 1. Given

the set {S̃1} in (14) denoting the top M detections for
t = 1, the initial proposal distribution, from which the
first P samples are drawn from, is defined as:

S
(l)
1 ∼

∑

{S̃1}

Zp(S̃1|I1, y1,D)G(S1|S̃1,ΣS), (15)

where l ∈ {1, ..P} denotes the index to the
lth particle, the constant Z guarantees that
∑

{S̃1}
Zp(S̃1|I1, y1,D) = 1, and G(.|µ,Σ) is a

Gaussian distribution with mean µ and covariance Σ,
with ΣS learned from the training data.

• Calculation of the probability values p(It|S
(l)
t , y1,D)

for each particle S
(l)
t using the filtering distribution

(3). This step involves the calculation of the proba-
bility of p(St|It, y1,D) according to (9), which does
not involve any search process.

• Computation of the probability of the cycle
p(Kt−1|St−1, It−1, y1,D) in the transition model
(6) given the segmentation St−1. Notice that our
training set D includes the annotation of the cycle in
each training image, which means that the classifier
(9) also computes p(Kt−1|St−1, It−1, y1,D), where
∑

Kt−1
p(Kt−1|St−1, It−1, y1,D) = 1.

Finally, it is important to note that the observation model
also uses a shape model consisting of a principal component

analysis (PCA) shape space for systole, and another PCA
space for diastole. These PCA spaces are learned from the
annotated training set D. During detection, given St, we
first find the detected cycle as

K∗t = arg max
Kt

p(Kt|St, It, y1,D), (16)

and project St onto the PCA space indicated by K∗t ∈
{systole,diastole}. This projection smooths the segmenta-
tion St.

2.3.1 Deep Neural Network

The effective use of large-scale conventional neural net-
work classifiers (with several hidden layers and thousands
of nodes) is limited because backpropagation [14] (algo-
rithm to estimate the classifier parameters) converges only
when the initial guess for the parameter values are close to
a local optimum of the optimization function. Hinton et
al. [15] found a way to provide such initial guesses through
unsupervised training of multiple layers of restricted Boltz-
mann machines (RBM), which are represented by a hid-
den and a visible layer of stochastic binary units with con-
nections only between layers (i.e., no connections within
layers). After the parameters of several layers of RBMs
were learned, the whole network is trained using back-
propagation to adjust the weights to a local maximum for
the regressor and classifier functions. For the regressor
in (11), we find the solution for the maximization func-
tion ψMAP = arg maxψ p({Si}i=1..N |{(I, θ)i}i=1..N , ψ),
where (I, θ,S)i ∈ D. For the classifier (13), we find the
solution for γMAP = argmaxγ p(y = 1|{(I, θ)i}i=1..N , γ).

2.3.2 Efficient Search Methods

For the detection of the LV in the generation of proposal
distributions, there is a five dimensional space for the rigid
detection and N dimensions for the non-rigid search space,
resulting in a search space of E5+NE samples, which is too
high for most of practical values of E ∈ [102, 103] and
NE ∈ {10, ..., 25}. Running the search procedure on the
image pyramid, with one classifier per image scale, reduces
the search space significantly. The advantage here is to re-
duce the number of samples in the coarsest scale to Ecoarse,
and move to finer scales only the best Efine ∈ [10, 30] can-
didates. Note that the search procedure in fine scales needs
to happen only around the current search point, meaning
35 (3 points in 5 dimensions) samples for each of the Efine

positions. Moreover, performing the non-rigid search only
after the rigid search is done means a total search space of
E5

coarse + (#scales− 1)× Efine × 35 +NE × Efine.
In order to reduce the search space we assume a prior

distribution on the coarse search space, and sample Ecoarse

times from this distribution (Monte-Carlo sampling), which
means a search space of Ecoarse + (#scales − 1) × Efine ×
35 + NE × Efine. Our second contribution is the imple-
mentation of efficient search procedures in order to reduce
the exhaustive search of 35 points around the hypotheses.



We use two methods that are widely used in optimiza-
tion algorithms, which are: gradient descent and Newton
step [2]. These methods work for convex functions, and
their use in non-convex functions, such as the ones pro-
duced by the deep neural net classifiers, only works with
a sufficiently large number of Ecoarse. In gradient descent,
∇p(y = 1|θ, I,D, γMAP ) is computed numerically using
central difference, representing a computation of the classi-
fier in 10 points of the search space (five parameters times
two points) plus the line search in 10 points. By limiting the
number of iterations between one and five for each hypoth-
esis, the search space is then reduced to 20 to 100 points,
which is smaller than 35 = 243. In theory, a faster conver-
gence can be achieved with the Newton step, but the com-
putation of the Hessian matrix, gradient and line search in-
volves 25+10 search space points. Limiting the number of
iterations between one and five means that the complexity
of this step for one hypothesis is between 35 to 175, which
is also smaller than 35 = 243.

2.4. The Proposal Distribution

The proposal distribution is another important contribu-
tion of this work. It consists of multiple dynamic models,
where each model is built for each particle at each time in-
stant t based on the observation model (i.e., the detections
from the deep neural network) and the particle from time
t − 1. The proposal distribution at time t is defined with a
mixture of Gaussians, as follows [12] (Fig 4-(a)):

q(St|S
(l)
1:t−1, I1:t, y1,D) ∼

αqobs(St|Kt, y1, I1:t,D) + (1− α)p(St|St−1,D),
(17)

where the observation model is represented by

qobs(St|Kt, y1, I1:t,D) =
∑

S̃t

Zp(S̃t|It, y1,D)G(St|S̃t,ΣS),

(18)
which is a Gaussian mixture model indicating the proba-

bility distribution taking the top M detections {S̃t} from
the observation model defined in (14), where the normal-
ization constant Z assures that

∑

S̃t
Zp(S̃t|It, y1,D) = 1,

and p(S̃t|It, y1,D) is the probability response from the ob-
servation model given a specific segmentation (i.e., it does
not involve a search process). In Fig. 4-(a), the distribution
qobs(.) is represented by the dashed curves. The transition
model is then represented by:

p(St|St−1,D) =
∑

Kt−1∈{systole,diastole} 0.5×G(St|M(Kt−1)St−1,ΣS),

(19)
where M(Kt−1) is the linear transform (Fig. 4-(b)) learned
from the training set that describes the parameters of a trans-
formation during the systole and diastole phases (solid lines
in Fig. 4-(a)). Finally, the parameter α in (17) denotes how

each detection S̃t result should be trusted given the particle
St−1, as follows:

α = max
S̃t

exp{−Kα(S̃t−St−1)
⊤Σ−1

S (S̃t−St−1)}, (20)
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Figure 4. Graph (a) shows the mixture of Gaussians forming the
proposal distribution. Notice that the detections parameters closer
to the particle parameters at t−1 (roughly at the center between the
two solid thicker curves) have higher weights in the proposal dis-
tribution. Graph (b) displays the application of the learned linear
transformations for the systole (contraction) and diastole (relax-
ation) cycles.

Figure 5. Subset of learned features for classifier at σ = 4.

where Kα is a parameter of the model to be determined
through cross-validation.

3. Training Parameters

The training of the observation model involved the use
of a set of 400 ultrasound images (from 12 sequences) of
left ventricles annotated by experts. For the rigid classifier,
we build an image scale space L(x, σ) = G(x, σ) ∗ I(x),
where G(x, σ) is the Gaussian kernel, ∗ is the convolution
operator, I(x) is the input image, σ is the image scale pa-
rameter, and x is the image coordinate. We train three sepa-
rate classifiers (13); one for each scale σ = {4, 8, 16}. The
positive and negative training sets are defined based on a
scale-dependent marginmσ that increases by a factor of two
after each octave. Positives for L(x, σ) are randomly gen-
erated inside the range [θ−mσ/2, θ+mσ/2], and negatives
are randomly generated outside the range [θ−mσ, θ+mσ],
where θ is the parameter vector representing the rigid trans-
formation of the LV annotation. Notice in Fig. 5 that the
type of features automatically learned from the this train-
ing process resembles wavelets. The non-rigid regressor
is trained at σ = 4, where each training sample is a line
of 41 pixels of length extracted perpendicularly from the
LV contour points (see Fig. 3) and the label to learn is the
pixel index in {1, ..., 41} that is closest to the LV contour.
Running a cross-validation procedure with 200 images for
training and 200 images for validation, the following pa-



Figure 6. Example of the first (top two rows) and second (bottom
two rows) test sequences. The yellow, solid line displays the man-
ual annotation, while the magenta dashed line shows the results
from our system.

rameters were estimated: 1) number of nodes per layer of
regressor network: 41 (visible), 50 (hidden 1), 50 (hid-
den 2), 250 (hidden 3), 1 (output); 2) number of nodes per
layer of the classifier networks: 16, 49, 196 (visible layers
at σ = {16, 8, 4}, respectively), 50 (hidden 1), 50 (hid-
den 2), 100 (hidden 3), 3 (output); 3) the prior distribution
p(θ|I,D) used in (12): Gaussian with mean and covariance
computed from the training parameters of the rigid trans-
form; 4) Ecoarse = 103 and Efine = 10. For the SIR al-
gorithm, the following parameters are determined through
cross validation: 1) number of particles: 100; 2) Kα = 0.1
in (20); and 3) the rate of effective particles for re-sampling
is KNeff = 0.1.

4. Experiments

We use the following three metrics to compare the out-
put of the detector with the reference contours, namely [11]:
the Hausdorff distance, the average distance, and the Ham-
moude distance [8]. Assuming that X = {xi}i=1..N

is the automatically estimated contour from a system and
S = {si}i=1..N is the manual segmentation, we first de-

fine the smallest point to curve distance as d(xi,S) =
minj ‖sj − xi‖2. The average distance between two curves
is defined by:

davg(X ,S) =
1

N

∑

i

d(xi,S), (21)

and the Hausdorff distance is defined as follows [9]:

dmax(X ,S) = max

(

max
i
{d(xi,S)},max

j
{d(sj ,X )}

)

.

(22)
Finally, the Hammoude distance [8] is defined by:

dH(X ,S) =
#((RX ∪RY)− (RX ∩RY))

#(RX ∪RY)
, (23)

whereRX represents the image region delimited by the con-
tour X , and similarly for RS .

The performance of the tracker was measured by com-
paring the contour estimates with reference contours pro-
vided by a cardiologist of Hospital Fernando Fonseca, Por-
tugal. Note that these images were not included in the 400
images of the training set. Two sequences from two differ-
ent subjects were used (see Fig. 6), where the cardiologist
provided manual segmentations for 40 images from each
sequence. Seq. 1 has in total 490 frames containing 26 car-
diac cycles, while seq. 2 has 470 frames with 19 cycles. For
the comparison, we present the results obtained with state-
of-the-art trackers for the left ventricle recently proposed by
Comaniciu et al. [4, 7], by Nascimento [11] and by a previ-
ous version of our method [3] that contains only the obser-
vation model (i.e., we did not implement a dynamic model,
only the static segmentation was present in the algorithm),
applied on the same data. Table 1 shows the comparisons
for the two sequences with the results of our approach in
rows “D.Full” (original search for the detection process),
“D.GradDes” (gradient descent search), and “D.Newton”
(Newton step search). The rows “S.Full”, “MMDA” and
“COM” show the respective results by the previous version
of our model with only the static segmentation [3], Nasci-
mento [11] and Comaniciu [4, 7]. In this table the best value
for each measure and sequence is highlighted. We com-
puted the statistical significance of these results with the stu-
dent’s t-test. This is a reasonable choice because the error
measures contain the same number of points, the variances
are similar independently of the methodology, and the er-
ror distributions are roughly Gaussian. We obtain a p-value
< 0.05 in the following cases: 1) using Hamm.(23) w.r.t.
COM [4, 7] and MMDA [11] in both sequences; 2) using
aver. (21) w.r.t. COM and MMDA in seq. 1 and MMDA in
seq. 2; and 3) using Hausd. (22) w.r.t. MMDA in seq. 2.
Recall that the p-value indicates whether the averages from
the 2-sample sets differ significantly (note that the null hy-
pothesis is that the means of the two normally distributions
are equal).

The run-time complexity is dominated by the LV detec-
tion, using the deep neural networks, that is run during the



Table 1. Comparisons in the sequences (Fig. 6). Each cell shows
the mean value and the standard deviation in parentheses.

Sequence One

Approach Hamm. (23) Aver. (21) Hausd. (22)

D.Full 0.17(0.04) 3.2(0.8) 19.9(1.9)

D.GradDes 0.17(0.04) 3.3(0.8) 19.1(2.2)

D.Newton 0.16(0.04) 3.3(0.8) 19.7(1.6)

S.Full[3] 0.18(0.06) 3.2(0.8) 20.0(2.6)

MMDA[11] 0.24(0.03) 4.8(0.9) 22.4(2.1)

COM[4, 7] 0.20(0.03) 3.8(0.5) 20.4(1.1)

Sequence Two

Approach Hamm. (23) Aver. (21) Hausd. (22)

D.Full 0.16(0.02) 3.0(0.5) 19.6(0.7)

D.GradDes 0.15(0.03) 2.9(0.5) 19.4(1.4)

D.Newton 0.21(0.13) 4.1(3.9) 20.5(5.3)

S.Full[3] 0.17(0.02) 3.0(0.5) 19.8(1.1)

MMDA[11] 0.24(0.03) 4.8(0.7) 20.2(1.4)

COM[4, 7] 0.18(0.03) 3.3(0.5) 17.2(1.3)

construction of the proposal distribution, which have the
following numbers of floating point multiplications for the
classifier at σ = 16 isO(8×106), at σ = 8 isO(2.5×107),
at σ = 4 is O(9.8×107), and the regressor is O(2.6×107).
Given these numbers, the “Full” search average complexity
is O(3.5 × 1011), while the average complexity for “Grad-
Des” is O(2 × 1010) and for “Newton” is O(3 × 1010).
All other steps of the algorithm present negligible run-time
complexity.

5. Conclusion and Future Work

In this paper we propose a new LV tracking algorithm
from ultrasound data. Using Sequential Monte Carlo sam-
pling algorithm (particle filtering), our main contributions
are a new transition and observation models, and a new
proposal distribution. The experiments show competitive
tracking results, which are compared quantitatively to state-
of-the-art methods. These results show empirical evidence
that SMC sampling methods are useful in LV tracking, but
the design of all models and distributions must be done care-
fully. More specifically, we see that the combination of dif-
ferent types of models in the proposal distribution provides
accuracy and robustness to imaging conditions and drifting.
Also, the principled combination of prior and learned mod-
els help alleviate the need of having an extensive and thor-
ough training set.
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